Search results

Search for "quantum transport" in Full Text gives 23 result(s) in Beilstein Journal of Nanotechnology.

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • , Shenzhen, 518060, China Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai 200444, China Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023
  • electronic properties [3][4][5][6], optical spectra [7][8][9][10], excitons [11][12][13], quantum transport [14][15][16][17][18], plasmons [5][19], thermoelectric effects [20][21], and superconductivity [22][23][24] of BP. One of the most promising applications of BP at the industrial level is expected to be
  • electronic properties through van der Waals interactions [29]. Although the pressure response of BP has been extensively studied, the dependence of strain-related quantum transport on the conformation in pure BP devices was rarely explored. This is the purpose of this manuscript. Moreover, in addition to
PDF
Album
Full Research Paper
Published 24 Sep 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • is also an effective way to study the transport properties of a device. A high MR ratio of 174% was reported in a recent work on Fe4N-based CPP-SV, and its spin-polarized quantum transport properties were investigated [12]. The CoFeMnSi-based heterostructure exhibited an ultrahigh tunnel
PDF
Album
Full Research Paper
Published 08 Aug 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • combining nanoconductors and metallic reservoirs [12]. Eventually, this effort might lead to the evolution of devices active in the challenging terahertz regime, which would open up novel possibilities [12]. This has led us to consider particular aspects of the electron–photon interaction on quantum
  • transport in the far-infrared (FIR) regime. The time-dependent electronic transport through a two-dimensional (2D) nanosystem patterned in a GaAs heterostructure, which is in turn embedded in a three-dimensional (3D) FIR photon cavity, generally displays three regimes: i) The switching transient regime in
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • superconductors with different (p/d) pairing symmetries, see also [32]. A related phenomenon concerns Multiple Andreev Reflection (MAR) features in nonequilibrium superconducting quantum transport at subgap voltages [33][34][35][36]. Indeed, it has been established that MAR processes are absent in S–TS junctions
PDF
Album
Full Research Paper
Published 06 Jun 2018

Disorder-induced suppression of the zero-bias conductance peak splitting in topological superconducting nanowires

  • Jun-Tong Ren,
  • Hai-Feng Lü,
  • Sha-Sha Ke,
  • Yong Guo and
  • Huai-Wu Zhang

Beilstein J. Nanotechnol. 2018, 9, 1358–1369, doi:10.3762/bjnano.9.128

Graphical Abstract
  • symmetric lead-wire coupling strength ΓL = ΓR = 0.3 meV. The bias voltage V across the whole device will shift the chemical potential μL(μR) in the leads to ±V/2. In modeling the disorder effect on the quantum transport in mesoscopic devices, the numerical results need to be averaged over enough random
PDF
Album
Full Research Paper
Published 04 May 2018

The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations

  • Olga E. Glukhova and
  • Dmitriy S. Shmygin

Beilstein J. Nanotechnol. 2018, 9, 1254–1262, doi:10.3762/bjnano.9.117

Graphical Abstract
  • (CNTs)/graphene. The electrical conductance of different models of this material was calculated in two mutually perpendicular directions. Regularities in resistance values were found. Keywords: carbon composites; electronic properties; interpolation; quantum transport; transmission function
  • conductance of single- and two-layer composites depends significantly on the topology of the film. The resistance changes drastically with the increase in the CNT length. Conclusion We created a new universal method for calculating the electron-transmission function and electrical conductance at quantum
  • transport in composite nanomaterials. This method allows us to investigate the electrophysical properties of atomic structures, which contain hundreds and thousands of atoms in the transmitted supercell. By the example of monolayer graphene and graphane it was shown that the developed method significantly
PDF
Album
Full Research Paper
Published 20 Apr 2018

Thermoelectric current in topological insulator nanowires with impurities

  • Sigurdur I. Erlingsson,
  • Jens H. Bardarson and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1156–1161, doi:10.3762/bjnano.9.107

Graphical Abstract
  • , both scalar and magnetic ones. The impurities deteriorate the ballistic quantum transport properties, but as long there are still remnants of the quantized levels, the predicted sign reversal of the thermoelectric current remains visible. Results and Discussion Clean nanowires When a topological
PDF
Album
Full Research Paper
Published 12 Apr 2018

An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi

  • Sahar Pakdel,
  • Mahdi Pourfath and
  • J. J. Palacios

Beilstein J. Nanotechnol. 2018, 9, 1015–1023, doi:10.3762/bjnano.9.94

Graphical Abstract
  • for the interstitial or valence electrons, while approaching the core electrons differently. Since localized orbitals are convenient for a number of reasons, for instance for quantum transport calculations [15][16], a Kohn–Sham Hamiltonian obtained from plane-wave DFT codes may be transformed into a
PDF
Album
Full Research Paper
Published 28 Mar 2018

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach. Keywords: electron correlation; electronic structure; quantum transport; spin transport
  • approach. In the second part we present our approach to combine DFT calculations and the master equation approach to quantum transport. Finally we present results of this new approach to describe tunnelling effects in monolayers. DFT-NEGF transport theory The ground-state electronic structure of the
PDF
Album
Full Research Paper
Published 06 Oct 2017

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • cryogenic vacuum at low temperatures makes it possible to study atomic-contacts of more reactive metals commonly used in quantum transport studies or in molecular electronics like silver, platinum, aluminum or others. In particular, the study of single-molecule junctions, which at room temperature suffer
PDF
Album
Full Research Paper
Published 30 May 2016

Thermoelectricity in molecular junctions with harmonic and anharmonic modes

  • Bijay Kumar Agarwalla,
  • Jian-Hua Jiang and
  • Dvira Segal

Beilstein J. Nanotechnol. 2015, 6, 2129–2139, doi:10.3762/bjnano.6.218

Graphical Abstract
  • ; quantum transport; thermoelectricity; Introduction Molecular electronic junctions offer a rich playground for exploring basic and practical questions in quantum transport, such as the interplay between electronic and nuclear dynamics in nonequilibrium situations. Theoretical and computational efforts
PDF
Album
Full Research Paper
Published 11 Nov 2015

Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

  • Yuya Kitaguchi,
  • Satoru Habuka,
  • Hiroshi Okuyama,
  • Shinichiro Hatta,
  • Tetsuya Aruga,
  • Thomas Frederiksen,
  • Magnus Paulsson and
  • Hiromu Ueba

Beilstein J. Nanotechnol. 2015, 6, 2088–2095, doi:10.3762/bjnano.6.213

Graphical Abstract
  • accessibility, we propose that phenyl rings are promising components in mechanical molecular devices. Keywords: density functional theory; phenyl rings; quantum transport simulations; scanning tunneling microscopy; single-molecule switches; Introduction Atomic-scale switches are key device components in
PDF
Album
Full Research Paper
Published 30 Oct 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • to the modification of its intrinsic physical properties, including bandgap variation and quantum transport disturbance. Therefore, a detailed study of how the atomic structure responds to strain has contributed to the fundamental understanding of the physics of CNTs and other related nanostructures
PDF
Album
Review
Published 16 Jul 2015

Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?

  • Tonatiuh Rangel,
  • Gian-Marco Rignanese and
  • Valerio Olevano

Beilstein J. Nanotechnol. 2015, 6, 1247–1259, doi:10.3762/bjnano.6.128

Graphical Abstract
  • the quantum transport conductance in terms of the projected density of states (PDOS) onto molecular orbitals (MOs). We first consider two different methods for identifying the relevant MOs: (1) diagonalization of the Hamiltonian of the isolated molecule and (2) diagonalization of a submatrix of the
  • ; benzene-dithiol; DFT-Landauer; molecular electronics; nanoelectronics; quantum transport; Introduction According to Moore’s law, in a decade or so, the downscaling of conventional silicon-based electronics will achieve its ultimate nanoscale limit. Molecular electronics, or electronics at the nanoscale
  • junction geometry is not measured and hence is unknown. Given these difficulties, resorting to theory could reveal a valid approach to understand and interpret the experimental observations. The theoretical description of the electronic quantum transport in molecular junctions or nanostructures relies on
PDF
Album
Full Research Paper
Published 02 Jun 2015

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1176–1182, doi:10.3762/bjnano.6.119

Graphical Abstract
  • values as high as ZTe = 2.45 are obtained. All thermoelectric properties can be further enhanced by tuning the Fermi energy of the leads. Keywords: graphene nanoribbons; quantum transport; thermal conductance; thermoelectric figure of merit; thermopower; Introduction Nowadays, the performance of
PDF
Album
Full Research Paper
Published 18 May 2015

Production, detection, storage and release of spin currents

  • Michele Cini

Beilstein J. Nanotechnol. 2015, 6, 736–743, doi:10.3762/bjnano.6.75

Graphical Abstract
  • production of spin currents can be a useful alternative to optical excitation and electric field methods. Keywords: quantum pumping; quantum transport; spin current; Introduction The time-honored field of quantum transport has been evolving in the past 15 years in such a way that spin–orbit interaction
  • need of an external bias. However, the results have implications on the general problem of quantum transport in ballistic, topologically non-trivial circuits. Compelling physical arguments based on thought experiments [5] suggest that the magnetic moment of a quantum ring is not obtained by
PDF
Album
Full Research Paper
Published 13 Mar 2015

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

  • Elnaz Akbari,
  • Vijay K. Arora,
  • Aria Enzevaee,
  • Mohamad. T. Ahmadi,
  • Mehdi Saeidmanesh,
  • Mohsen Khaledian,
  • Hediyeh Karimi and
  • Rubiyah Yusof

Beilstein J. Nanotechnol. 2014, 5, 726–734, doi:10.3762/bjnano.5.85

Graphical Abstract
  • and its applications to quantum transport. In a recent paper [14], Chin et. al show how nanoelectronic parameters can be extracted from quantum conductance. In the next section, we advance these thoughts as we design the sensor made out of graphene and CNT. Carbon nanotubes and graphene CNTs were
PDF
Album
Full Research Paper
Published 28 May 2014

Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

  • Ye Wei,
  • Haifei Zhan,
  • Kang Xia,
  • Wendong Zhang,
  • Shengbo Sang and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 717–725, doi:10.3762/bjnano.5.84

Graphical Abstract
  • the electronic and quantum transport properties of graphene. Such doped graphene is envisioned with exciting applications as high-performance FET devices [8], and metal-free electrocatalyst for oxygen reduction fuel cells [9]. In addition to doping, various graphene derivatives have also been
PDF
Album
Full Research Paper
Published 27 May 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • support from the Deutsche Forschungsgemeinschaft through the priority program SPP 1243 “Quantum Transport Through Molecules” (DFG TA 244/5). The authors thank R. Merkel (Forschungszentrum Jülich) for helpful discussions.
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

P-wave Cooper pair splitting

  • Henning Soller and
  • Andreas Komnik

Beilstein J. Nanotechnol. 2012, 3, 493–500, doi:10.3762/bjnano.3.56

Graphical Abstract
  • easily be identified in a hybrid junction between a superconductor and two ferromagmets (setup shown later in Figure 1). However, p-wave superconductors that can be easily handled in quantum transport experiments are presently not available. Therefore, in a second step we show how p-wave splitting can be
PDF
Album
Full Research Paper
Published 06 Jul 2012

Current-induced forces in mesoscopic systems: A scattering-matrix approach

  • Niels Bode,
  • Silvia Viola Kusminskiy,
  • Reinhold Egger and
  • Felix von Oppen

Beilstein J. Nanotechnol. 2012, 3, 144–162, doi:10.3762/bjnano.3.15

Graphical Abstract
  • vibrational modes on the electronic dynamics. We employ the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium. For a slow mechanical mode the current can be obtained from the Landauer–Büttiker formula in the strictly
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2012

Transmission eigenvalue distributions in highly conductive molecular junctions

  • Justin P. Bergfield,
  • Joshua D. Barr and
  • Charles A. Stafford

Beilstein J. Nanotechnol. 2012, 3, 40–51, doi:10.3762/bjnano.3.5

Graphical Abstract
  • ; multichannel; quantum transport; single-molecule junction; transmission eigenchannels; Introduction The number of transmission channels for a single-atom contact between two metallic electrodes is simply given by the chemical valence of the atom [1]. Recently, it was argued [2] that the number of dominant
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2012

Interaction of spin and vibrations in transport through single-molecule magnets

  • Falk May,
  • Maarten R. Wegewijs and
  • Walter Hofstetter

Beilstein J. Nanotechnol. 2011, 2, 693–698, doi:10.3762/bjnano.2.75

Graphical Abstract
  • arises for transport through magnetic atoms embedded in a molecular network on an insulating surface in an STM setup [4][5]. Such systems, which for simplicity we shall refer to as single-molecule magnets (SMM), constitute a single, large spin-moment with spin-anisotropy. The interplay with quantum
  • transport provides new possibilities to study and control their molecular magnetism. For instance, tunneling allows access to several charge states of the SMM, which can exhibit enhanced magnetic properties [2]. When such charge states are only virtually accessible, effective spin–spin exchange interaction
PDF
Album
Full Research Paper
Published 18 Oct 2011
Other Beilstein-Institut Open Science Activities